An Artificial Neural Network Approach to Software Testing Effort Estimation
نویسنده
چکیده
Trying to predict the effort needed to test prewritten software is a complex problem as the amount of work involved in software testing depends on a number of independent and related factors (for example, lines of code, unit complexity etc.). Artificial neural networks appear well suited to problems of this nature as they can be trained to understand the explicit and inexplicit factors that drive a testÕs cost. For this reason, artificial neural networks were investigated as a potential tool to improve software testing effort estimation using project data supplied by Rolls-Royce and Associates Limited. In addition, in order to deal with uncertainties that exist in modelled results, statistical analyses were employed to identify confidence intervals for predicted costs. This paper discusses these analyses and comments on the results that were obtained when artificial neural networks were developed, trained and tested on the data
منابع مشابه
A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort
Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...
متن کاملEvaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملPrediction of Time to Failure in SCC of 304 Stainless Steel in Aqueous Chloride Solution Using Neural Network
Prediction of SCC risk of austenitic stainless steels in aqueous chloride solution and estimation of the time to failure as a result of SCC form important and complicated topics for study. Despite the many studies reported in the literature, a formulation or a reliable method for the prediction of time to failure as a result of SCC is yet to be developed. This paper is an effort to investigat...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کامل